Dendritic Cell-Specific Antigen Delivery by Coronavirus Vaccine Vectors Induces Long-Lasting Protective Antiviral and Antitumor Immunity
نویسندگان
چکیده
Efficient vaccination against infectious agents and tumors depends on specific antigen targeting to dendritic cells (DCs). We report here that biosafe coronavirus-based vaccine vectors facilitate delivery of multiple antigens and immunostimulatory cytokines to professional antigen-presenting cells in vitro and in vivo. Vaccine vectors based on heavily attenuated murine coronavirus genomes were generated to express epitopes from the lymphocytic choriomeningitis virus glycoprotein, or human Melan-A, in combination with the immunostimulatory cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF). These vectors selectively targeted DCs in vitro and in vivo resulting in vector-mediated antigen expression and efficient maturation of DCs. Single application of only low vector doses elicited strong and long-lasting cytotoxic T-cell responses, providing protective antiviral and antitumor immunity. Furthermore, human DCs transduced with Melan-A-recombinant human coronavirus 229E efficiently activated tumor-specific CD8(+) T cells. Taken together, this novel vaccine platform is well suited to deliver antigens and immunostimulatory cytokines to DCs and to initiate and maintain protective immunity.
منابع مشابه
Dendritic Cell-Specific Delivery of Flt3L by Coronavirus Vectors Secures Induction of Therapeutic Antitumor Immunity
Efficacy of antitumor vaccination depends to a large extent on antigen targeting to dendritic cells (DCs). Here, we assessed antitumor immunity induced by attenuated coronavirus vectors which exclusively target DCs in vivo and express either lymphocyte- or DC-activating cytokines in combination with a GFP-tagged model antigen. Tracking of in vivo transduced DCs revealed that vectors encoding fo...
متن کاملProtective Antiviral Immunity Conferred by a Nonintegrative Lentiviral Vector-Based Vaccine
Lentiviral vectors are under intense scrutiny as unique candidate viral vector vaccines against tumor and aggressive pathogens because of their ability to initiate potent and durable specific immune responses. Strategies that alleviate safety concerns will facilitate the clinical developments involving lentiviral vectors. In this respect, the development of integration deficient lentiviral vect...
متن کاملPoly-functional and long-lasting anticancer immune response elicited by a safe attenuated Pseudomonas aeruginosa vector for antigens delivery
Live-attenuated bacterial vectors for antigens delivery have aroused growing interest in the field of cancer immunotherapy. Their potency to stimulate innate immunity and to promote intracellular antigen delivery into antigen-presenting cells could be exploited to elicit a strong and specific cellular immune response against tumor cells. We previously described genetically-modified and attenuat...
متن کاملInduction of specific CD8+ memory T cells and long lasting protection following immunization with Salmonella typhimurium expressing a lymphocytic choriomeningitis MHC class I-restricted epitope.
Numerous studies have shown the potential of Salmonella typhimurium as a vector for delivery of heterologous proteins for vaccination against other pathogens. Earlier studies showed that the inefficient elicitation of MHC class I-restricted responses could limit the use of S. typhimurium as a heterologous antigen delivery vector for vaccination. We recently developed an approach to overcome thi...
متن کاملChemokine receptor-mediated delivery directs self-tumor antigen efficiently into the class II processing pathway in vitro and induces protective immunity in vivo.
Nonimmunogenic antigens can be efficiently rendered immunogenic by targeting them to antigen-presenting cells via differentially expressed chemokine receptors. For example, self-tumor or HIV antigens genetically fused with proinflammatory chemoattractants elicit potent immune responses and protective antitumor immunity in mice. Herein we demonstrate that the mechanism by which chemokine fusions...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 1 شماره
صفحات -
تاریخ انتشار 2010